R&D for Dark Energy Science

```
Imaging Sensors (Thanks to P. O'Connor (BNL), C. Bebek (LBNL), C. Leitz (LL)
```

CCDs

CMOS

Ge-CCDs

21-cm Experiments (A. Liu will talk at SLAC Workshop)

Other Activities (not covered)

Wide field adaptive optics Simulations, Algorithms, Computing

MKIDS J. Estrada

OH-Suppression S. Kuhlman With Ring-Resonators

K. Honscheid Ohio State University CV@FNAL 11/10/15

Detector R&D Critical for DE Missions

Intensive DoE-supported R&D enabled current DE missions.

 Fully depleted red-sensitive CCDsdeveloped by LBNL currently in use for DES and to be used for DESI.

- Detailed studies of HgCdTe FPAs has led to greatly improved properties (QE, read noise, dark current...) and has led to a new detailed understanding of photometric response.
- What will be the next enabling technology?

CCD and CMOS Detector Concepts

	CCD Approach	CMOS Approach
Pixel	Photodiode Charge generation & charge integration	Photodiode Amplifier + Charge generation, charge integration & charge-to-voltage conversion
Array Readout	Charge transfer from pixel to pixel	Multiplexing of pixel voltages: Successively connect amplifiers to common bus
Sensor Output	Output amplifier performs charge-to-voltage conversion	Various options possible: - no further circuitry (analog out) - add. amplifiers (analog output) - A/D conversion (digital output)

CMOS Common Features

- CMOS sensors/multiplexers utilize the same process as modern microchips
 - Many foundries available worldwide
 - Cost efficient
 - Latest processes available down to 0.13 μm
- CMOS process enables integration of many additional features
 - Various pixel circuits from 3 transistors up to many 100 transistors per pixel
 - Random pixel access, windowing, subsampling and binning
 - Bias generation (DACs)
 - Analog signal processing (e.g. CDS, programmable gain, noise filter)
 - A/D conversion
 - Logic (timing control, digital signal processing, etc.)
- Electronic shutter (snapshot, rolling shutter, non-destructive reads)
 - No mechanical shutter required
- Low power consumption
- Radiation tolerant (by process and by design)

CMOS Status and R&D

Photodiode and transistors share the area -> less than 100 % fill factor

- Fast readout rates (MHz) and low noise (1e-); low power
- Ongoing efforts on back side illumination and high resitivity, thick devices
- Low full well, low QE, low(er) chip size compared to CCDs
- So far disappointing performance when hybradized to silicon
- Commercial advantage not fully realized (spezialized processing needs)

Ge CCD R&D

(thanks to Chris Leitz, Lincoln Labs)

Strong absorption from UV through short-wave infrared (SWIR)

- Recent advances in Germanium process technology enables fabrication of large, high quality devices
- 200 mm wafers available (larger than for other SWIR technologies)
- Relatively high dark current due to high intrinsic carrier concentration Requires cooling (goal 400 e-/pixel/s)

Germanium CCD Roadmap

2016: 512 × 512

2017: 1k × 1k

Metric	2016 Goal
Frame Rate	4 fps
Read Noise	10 e ⁻
QE	> 60% (400-1600 nm)
Well capacity	> 100 ke ⁻
Features	TDI / Pushbroom easily implemented
	 On-chip binning w/o read noise penalty

2019: 2k × 2k

Increase format as high chargetransfer efficiency and uniformity realized.